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Abstract. Attribute reduction is one of the most important problems
in rough set theory. This paper deals with attribute reduction in tolerance
information systems based on Dempster-shafter theory of evidence. The
concepts of plausibility consistent set and belief consistent set are intro-
duced in tolerance information systems. Furthermore, relative plausibility
reduction and belief reduction are discussed in tolerance systems and it is
proved that a plausibility consistent set must be a consistent set. More-
over, it is shown that an attribute set is a belief reduction if and only if it
is a classical reduction in tolerance information systems.
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1. Introduction

Rough set theory, proposed by Pawlak [11, 12, 13], has become a well-established
mechanism for uncertainty management in a wide variety of applications related to
artificial intelligence [5, 6, 7, 10]. The theory has been found its successful appli-
cations in the fields of pattern recognition, medical diagnosis, data mining, conflict
analysis, algebra [1, 3, 14, 15, 16], which need to deal with an amount of imprecise,
vague and uncertain information. In recent years, the rough set theory has generated
a great deal of interest among more and more researchers.

However, in practice, due to the existence of uncertainty and complexity of par-
ticular problems, the problem would not be settled perfectly by means of classical
rough sets. Therefore, it is vital to generalize the classical rough set model. To over-
come this limitation, classical rough sets have been extended to several interesting
and meaningful general models in recent years by proposing other binary relations,
such as tolerance relations [27].
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Another important method is used to deal with uncertainty in information sys-
tems is the Dempster-Shafer theory of evidence. It was originated by Dempster’s
concept of lower and upper probability[4], and extended by Shafer as a theory[19].
The basic representational structure in this theory is a belief structure which con-
sists of a family of subsets, called focal elements, with associated individual positive
weights summing to one. The primitive numeric measures derived from the belief
structure are a dual pair of belief and plausibility functions.

There are strong connections between rough set theory and Dempster-Shafer the-
ory of evidence. It has been demonstrated that various belief structures are associ-
ated with various rough approximation spaces such that the different dual pair of
lower and upper approximation operators induced by rough approximation spaces
may be used to interpret the corresponding pairs of belief and plausibility functions
induced by belief structures[20, 22].

It is well known that not all condition attributes in an information system are nec-
essary. Knowledge reduction in the sense of reducing attributes is thus an outstand-
ing contribution made by rough set research to data analysis[2, 9, 17, 18, 21, 23, 26].
In recent years, more attention has been paid to attribute reduction in tolerance
information systems in rough set research[8].

In the next section, we give some basic notions related to tolerance information
systems. We also review rough set approximations in tolerance information systems.
Some basic notions of evidence theory are introduced in Section 3. The concepts
of belief reduction and plausibility reduction in tolerance information systems are
proposed and the relationships between the new concepts of reductions and the
classical reduction are examined in Section 4. We then conclude the paper with a
summary and out-look for further research in Section 5.

2. Rough set and tolerance information systems

In this section, we recall some necessary notions and preliminaries required in
the sequel of our work. Detailed description of these theories can be found in the
literature [28].

The concept of information system (sometimes called data tables, attribute-value
systems,knowledge representation systems, etc.) provides a convenient tool for the
representation of objects in terms of their attribute values.

An information system is an ordered triple I = (U,A, F ), where U is a non-empty
finite universe and A is a finite and non-empty set of attributes, such that there exists
a map fl : U 7→ Val

for any al ∈ A, where Val
is called the domain of the attribute

al, and denoted F = {fl|al ∈ A}.
If a binary relation R on the universe U is reflexive and symmetric, it is called

a tolerance relation on U . The set of all tolerance relations on U is denoted by R.
Obviously, tolerance relation R ∈ R can construct a covering of the universe U [8].

Definition 2.1 ([24]). A tolerance information system is a triple S = (U,A, τ) ,
where U is the non-empty finite object set known as universe; A is the non-empty
finite set of attributes; the mapping τ is the mapping from 2A into the family set R
of tolerance relations on U .
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Definition 2.2 ([8]). Let I = (U,A, τ) be a tolerance information system, for
B ⊆ A, X ⊆ U ,RB ∈ R. Denote

[xi]B = {xj ∈ U |(xi, xj) ∈ RB},
U/RB = {[xi]B |xi ∈ U},

where i ∈ {1, 2, ..., |U |}, then [xi]B will be called a tolerance class. And U/RB is
called a classification of U about attribute set B.

X is said to be a maximal tolerance class with B if there does not exist another
tolerance class Y with respect to B such that X ⊆ Y .

Proposition 2.3 ([8]). Let R be a tolerance relation, B ⊆ A.
(1) If B ⊆ A, then RA ⊆ RB.
(2) If B ⊆ A, then [xi]A ⊆ [xi]B.
(3) If xj ∈ [xi]B, then xi ∈ [xj ]B .
(4) |[xi]B | ≥ 1 for any xi ∈ U , B ⊆ A.
(5) U/RB constitutes a covering of U , i.e., for every x ∈ U we have that [x]B 6= ∅

and
⋃

x∈U

[x]B = U .

Where | . | denotes cardinality of the set.

Definition 2.4. Let I = (U,A, τ) be a tolerance information system. The lower
approximation and the upper approximation of a set X ⊆ U are respectively defined
by

RA(X) = {x ∈ U : [x]A ⊆ U},
RA(X) = {x ∈ U : [x]A ∩X 6= ∅}.

The set bnR(x) = RA(X)−RA(X) is called the boundary of X. The set RA(X)
consists of elements which surely belong to X in view of the knowledge provided by
R, while RA(X) consists of elements which possibly belong to X. The boundary is
the actual area of uncertainty. It consists of elements whose membership in X can
not be determined when R-related objects can not be distinguished from each other.

Some basic properties of approximations are shown in the following.

Proposition 2.5 ([26]). Let I = (U,A, τ) be a tolerance information system and R
be a tolerance relation on U . If X, Y ⊆ U , ∼ X is the complement of X. Then the
following properties hold.

(1) RA(X) ⊆ X ⊆ RA(X);
(2) RA(∅) = RA(∅) = ∅, RA(U) = RA(U) = U ;
(3) ∼ RA(X) = RA(∼ X), RA(∼ X) =∼ RA(X);
(4) RA(X ∩ Y ) = RA(X) ∩RA(Y ), RA(X ∪ Y ) = RA(X) ∪RA(Y );
(5) RA(X ∪ Y ) ⊇ RA(X) ∪RA(Y ), RA(X ∩ Y ) ⊆ RA(X) ∩RA(Y );
(6) If X ⊆ Y , then RA(X) ⊆ RA(Y ) and RA(X) ⊆ RA(Y );
(7) RARA(X) ⊆ X ⊆ RARA(X).

Example 2.6. Suppose U = {x1, x2, x3, x4, x5, x6}, A consists of three attributes
called a, b, c respectively. Their attribute values are given in Table 1. Let us define
a mapping τ : 2A 7→ R(where R is a family of tolerance relations), ∀B ∈ 2A, R ∈ R

R = {(x, y)||fli(x)− fli(y)| ≤ 1}, ∀li ∈ B.
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Table 1.
U a b c
x1 1 2 1
x2 3 2 2
x3 1 1 2
x4 2 1 3
x5 3 3 2
x6 3 2 3

From Table 1 we have

[x1]A = {x1, x3};
[x2]A = {x2, x4, x5, x6};
[x3]A = {x1, x3, x4};
[x4]A = {x2, x3, x4, x6};
[x5]A = {x2, x5, x6};
[x6]A = {x2, x4, x5, x6}.

Thus, it is obvious that U/RA = {[x1]A, [x2]A, [x3]A, [x4]A, [x5]A, [x6]A}.
And if we let X = {x1, x3, x4}, then

RA(X) = {x1, x3};
RA(X) = {x1, x2, x3, x4, x6}.

It is clear that

RA(X) ⊆ X ⊆ RA(X).

3. Evidence theory in tolerance information systems

In evidence theory[4, 19], let U be a non-empty finite universe of discourse, a set
function m : 2U 7→ [0, 1](where 2U is the classes of all subset of the U )is referred to
as a basic probability assignment if it satisfies :

(M1) m(∅) = 0

(M2)
∑

X∈U/RA

m(X) = 1

The value m(X) represents the degree of belief that a specific element of U belongs
to set X, but not to any particular subset of X. A set X ⊆ U with nonzero basic
probability assignment is referred to as a focal element.

We denoted the family of all focal elements of m by µ . The pair (µ,m) is
called a belief structure or a body of evidence. Associated with each belief structure
in information systems based on classical equivalence relation, a pair of belief and
plausibility functions can be derived.
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Definition 3.1 ([4, 19]). Let (µ, m) be a belief structure. A set function Bel : 2U 7→
[0, 1] is referred to as a belief function on U , if

Bel(X) =
∑

Y⊆X

m(Y ), ∀X ∈ 2U .

A belief function Bel : 2U 7→ [0, 1] can be equivalently defined by axioms, if Bel
is a belief function iff it satisfies the axioms:

(1) Bel(∅) = 0,
(2) Bel(U) = 1,
(3) For every collection of subsets X1, X2, ..., Xn ⊆ U ,

Bel(
n⋃

i=1

Xi) ≥
∑

∅6=J⊆{1,2,...,n}
(−1)|J|+1Bel(

⋂

i∈J

Xi).

Where |J | is the cardinality of the set J .

Definition 3.2 ([4, 19]). A set function Pl : 2U 7→ [0, 1] is referred to as a plausibility
function on U , if

Pl(X) =
∑

Y ∩X 6=∅
m(Y ),∀X ∈ 2U .

We can define a relational partition function or a basic set assignment.

Definition 3.3. Let I = (U,A, τ) be a tolerance information system. We denote

j(X) = {x ∈ U |[x]A = X}.
for any X ∈ U/RA.

It is easy to verify that j satisfies the properties
(1) j(∅) = ∅;
(2)

⋃
Y⊆U

j(Y ) = U ;

(3) A 6= B ⇒ j(A) ∩ j(B) = ∅;
(4) R(X) =

⋃
Y⊆X

j(Y ), R(X) =
⋃

Y ∩U 6=∅
j(Y ).

Then a mass function of I can be defined by a map m : U/RA → [0, 1], where

m(X) =
|j(X)|
|U | .

By above definition, we can easily find out that a mass function of a tolerance
information system still satisfies two basic axioms.

Definition 3.4. Let I = (U,A, τ) be a tolerance information system. A set function
Bel : 2U 7→ [0, 1] is referred to as a belief function on U , if

Bel(X) =
∑

Y⊆X

m(Y ), ∀X ∈ 2U .

A set function Pl : 2U 7→ [0, 1] is referred to as a plausibility function on U , if

Pl(X) =
∑

Y ∩X 6=∅
m(Y ),∀X ∈ 2U .
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There are strong connections between rough set theory and the evidence theory.
The following theorem shows that the classical belief and plausibility functions can
be interpreted in terms of the Pawlak’s lower and upper approximation of sets[21].

Theorem 3.5 ([25]). Let I = (U,A, F ) be an information system. For any X ⊆ U ,
B ⊆ A, denote

BelB(X) =
|RB(X)|
|U | ;

PlB(X) =
|RB(X)|
|U | .

Then BelB(X) is the belief function and PlB(X) is the plausibility function of U ,
where the corresponding mass distribution is

mB(Y ) =





|Y |
|U | , if Y ∈ U/RB;

0, otherwise.

Hence, we can acquire the following results which show that the pair of lower and
upper approximation operators in tolerance information systems generate a pair of
belief and plausibility function, respectively.

Theorem 3.6. Let I = (U,A, τ) be a tolerance information system. For any X ⊆ U ,
B ⊆ A, denote

BelB(X) =
|RB(X)|
|U | ;

PlB(X) =
|RB(X)|
|U | .

Then BelB(X) is the belief function and PlB(X) is the plausibility function of U ,
where the corresponding mass distribution is

mB(Y ) =





|j(X)|
|U | , if Y ∈ U/RB;

0, otherwise.

Proof. From Proposition 2.5 we can see that

(1)
|RB(∅)|
|U | = 0;

(2)
|RB(U)|
|U | = 1,

which satisfy (1) and (2) of the axioms. Consider a collection X1, X2, ..., Xn ⊆ U ,
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we have
|RB(X1 ∪X2 ∪ ... ∪Xn)|

|U |

≥|RB(X1) ∪RB(X2) ∪ ... ∪RB(Xn)|
|U |

=
∑

i

|RB(Xi)|
|U | −

∑

i<j

|RB(Xi) ∩RB(Xj)|
|U | + ...+

(−1)n+1 |RB(X1) ∩RB(X2) ∩ ... ∩RB(Xn)|
|U |

=
∑

i

|RB(Xi)|
|U | −

∑

i<j

|RB(Xi ∩Xj)|
|U | + ... + (−1)n+1 |RB(X1 ∩X2 ∩ ... ∩Xn)|

|U | .

Thus, we proved that BelB(X) is the belief function of U . And one can obtain
directly that PlB(X) is the plausibility function since the duality between BelB(X)
and PlB(X) . So the theorem was proved. ¤

Corollary 3.7. Let I = (U,A, τ) be a tolerance information system and C ⊆ B ⊆ A.
For any X ⊆ U ,

BelC(X) ≤ BelB(X) ≤ |X|
|U | ≤ PlB(X) ≤ PlC(X).

Example 3.8. From Example 2.6, for X = {x1, x3, x4}, we have got

RA(X) = {x1, x3}, RA(X) = {x1, x2, x3, x4, x6}.
So we calculate

BelA(X) =
|RA(X)|
|U | =

2
6
,

P lA(X) =
|RA(X)|
|U | =

5
6
.

Another, if let B = {a} ⊆ A, we have

[x1]B = {x1, x3, x4};
[x2]B = {x2, x4, x5, x6};
[x3]B = {x1, x3, x4};
[x4]B = {x1, x2, x3, x4, x5, x6};
[x5]B = {x2, x4, x5, x6};
[x6]B = {x2, x4, x5, x6}.

So
RB(X) = {x1, x3};

RB(X) = {x1, x2, x3, x4, x5, x6}.
Thus, we get

BelB(X) =
|RB(X)|
|U | =

2
6
;
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PlB(X) =
|RB(X)|
|U | = 1.

Hence, the following is obvious.

BelB(X) ≤ BelA(X) ≤ |X|
|U | ≤ PlA(X) ≤ PlB(X).

4. Attribute reduction in tolerance information systems

In this section, we discuss the attribute reduction in tolerance information sys-
tems by proposing the concepts of belief and plausibility reductions in tolerance
information systems, and compare them with the existing classical reduction.

Definition 4.1. Let I = (U,A, τ) be a tolerance information system. Then
(1) an attribute subset B ⊆ A is referred to as a classical consistent set of I if

RB = RA. Moreover, if B is a classical consistent set of I and no proper subset of
B is a classical consistent set of I, then B is referred to as a classical reduction of I.

(2) an attribute subset B ⊆ A is referred to as a belief consistent set of I if
BelB(X) = BelA(X) for any X ∈ U/RA. Moreover, if B is a belief consistent set of
I and no proper subset of B is a belief consistent set of I, then B is referred to as a
belief reduction of I.

(3) an attribute subset B ⊆ A is referred to as a plausibility consistent set of I
if PlB(X) = PlA(X) for any X ∈ U/RA. Moreover, if B is a plausibility consistent
set of I and no proper subset of B is a plausibility consistent set of I, then B is
referred to as a plausibility reduction of I.

Theorem 4.2. Let I = (U,A, τ) be a tolerance information system and B ⊆ A.
Then the following holds.

(1) B is a classical consistent set of I if and only if B is a belief consistent set of
I.

(2) B is a classical reduction of I if and only if B is a belief reduction of I.

Proof. (1) Assume that B is a classical consistent set of I. For any X ∈ U/RA, since
[x]B = [x]A for all x ∈ U , we can have

[x]B ⊆ X ⇔ [x]A ⊆ X.

Then by the definition of lower approximation, we can have

x ∈ RB(X) ⇔ x ∈ RA(X), x ∈ U.

Hence RB(X) = RA(X) for any X ∈ U/RA. By Theorem 3.6, it follows that
BelB(X) = BelA(X) for any X ∈ U/RA.

Thus B is a belief consistent set of I.
Conversely, if B is a belief consistent set of I, that is,

BelB(X) = BelA(X) , for any X ∈ U/RA;
i.e.,

BelB([x]A) = BelA([x]A), for any x ∈ U .
Then for any x ∈ U we have

|RA([x]A)|
|U | =

|RB([x]A)|
|U | .
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By Corollary 3.7 and Proposition 2.5, we obtain
RA([x]A) = RB([x]A), for any x ∈ U .

So by the definition of lower approximation we have
{y|[y]A ⊆ [x]A} = {y|[y]B ⊆ [x]A}, for any x, y ∈ U .

That is to say
[y]A ⊆ [x]A ⇔ [y]B ⊆ [x]A, for any x, y ∈ U .

By above equation, we let y = x, then obtain [x]A ⊆ [x]A ⇔ [x]B ⊆ [x]A. Hence,
we have [x]B ⊆ [x]A for all x ∈ U . Therefore, by Proposition 2.3 we conclude that
[x]B = [x]A for any x ∈ U .

Thus B is a consistent set of I.
(2) It follows immediately from (1). Thus the proof was completed. ¤

Theorem 4.3. Let I = (U,A, τ) be a tolerance information system and B ⊆ A.
Denote

U/RA = {C1, C2, ..., Cn}, M =
n∑

i=1

BelA(Ci).

Then the following holds.

(1) B is a classical consistent set of I if and only if
n∑

i=1

BelB(Ci) = M .

(2) B is a classical reduction of I if and only if
n∑

i=1

BelB(Ci) = M , and for any

nonempty proper subset B
′ ⊂ B,

n∑
i=1

BelB′ (Ci) < M is true.

Proof. (1) By Theorem 4.2, we know that B is a classical consistent set of I if and
only if B is a belief consistent set of I. Thus B is classical consistent set of I if and

only if
n∑

i=1

BelB(Ci) =
n∑

i=1

BelA(Ci). That is to say B is classical consistent set of I

if and only if
n∑

i=1

BelB(Ci) = M .

(2) It can be obtain from (1) and Definition 4.1. ¤

Corollary 4.4. Let I = (U,A, τ) be a tolerance information system and B ⊆ A.
Denote

U/RB = {C1, C2, ..., Cn}, M =
n∑

i=1

BelB(Ci),

then M ≥ 1.

Example 4.5. Let consider the system in Example 2.6. Denote

C1 = [x1]A = {x1, x3};
C2 = [x2]A = {x2, x4, x5, x6};
C3 = [x3]A = {x1, x3, x4};
C4 = [x4]A = {x2, x3, x4, x6};
C5 = [x5]A = {x2, x5, x6};
C6 = [x6]A = {x2, x4, x5, x6}.
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So it can be calculated that

M =
6∑

i=1

BelA(Ci) =
11
6

.

On the other hand, it can be computed that

Bel{a}(Ci) =
19
6

;

Bel{b}(Ci) =
22
6

;

Bel{c}(Ci) =
23
6

;

Bel{a,b}(Ci) =
14
6

;

Bel{a,c}(Ci) =
16
6

;

Bel{b,c}(Ci) =
13
6

.

Hence, from the above calculation and Theorem 4.3 we can see that I has been a
unique belief reduction.

Theorem 4.6. Let I = (U,A, τ) be a tolerance information system and B ⊆ A. If
B is a classical consistent set of I, then B is a plausibility consistent set of I.

Proof. Assume that B is a classical consistent set of I. For any X ∈ U/RA, since
[x]B = [x]A for all x ∈ U , thus we know

[x]B ∩X 6= ∅⇔ [x]A ∩X 6= ∅.

Then by the definition of upper approximation we have

x ∈ RB(X) ⇔ x ∈ RA(X), x ∈ U.

Hence RB(X) = RA(X) for any X ∈ U/RA. By Theorem 3.6, it follows that
PlB(X) = PlA(X) for any X ∈ U/RA. Thus B is a plausibility consistent of I. The
proof was completed. ¤

The theorem shows the classical consistent set is the plausibility consistent set
in tolerance information systems. However, the reversion of Theorem 4.6 does not
hold. And we can show this fact by the following example.

Example 4.7. Suppose U = {x1, x2, x3, x4, x5, x6}, A consists of two attributes
called b, c respectively. Their attribute values are given in Table 2. Let us define a
mapping τ : 2A 7→ R(where R is a family of tolerance relations), ∀B ∈ 2A, R ∈ R

R = {(x, y)||fli(x)− fli(y)| ≤ 1}, ∀li ∈ B.
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Table 2.
U b c
x1 2 1
x2 2 2
x3 1 2
x4 1 3
x5 3 2
x6 2 3

If we denote A = {b, c} and B = {b}, then from Table 2 we have

C1 = [x1]A = {x1, x2, x3, x5};
C2 = [x2]A = {x1, x2, x3, x4, x5, x6};
C3 = [x3]A = {x1, x2, x3, x4, x6};
C4 = [x4]A = {x2, x3, x4, x6};
C5 = [x5]A = {x1, x2, x5, x6};
C6 = [x6]A = {x2, x3, x4, x5, x6}.

On the other hand, we have

[x1]B = {x1, x2, x3, x4, x5, x6};
[x2]B = {x1, x2, x3, x4, x5, x6};
[x3]B = {x1, x2, x3, x4, x6};
[x4]B = {x1, x2, x3, x4, x6};
[x5]B = {x1, x2, x5, x6};
[x6]B = {x1, x2, x3, x4, x5, x6}.

Thus we can obtain

RB(C1) = RA(C1) = {x1, x2, x3, x4, x5, x6};
RB(C2) = RA(C2) = {x1, x2, x3, x4, x5, x6};
RB(C3) = RA(C3) = {x1, x2, x3, x4, x5, x6};
RB(C4) = RA(C4) = {x1, x2, x3, x4, x5, x6};
RB(C5) = RA(C5) = {x1, x2, x3, x4, x5, x6};
RB(C6) = RA(C6) = {x1, x2, x3, x4, x5, x6}.

So

PlA(C1) = 1, P lA(C2) = 1, P lA(C3) = 1,

P lA(C4) = 1, P lA(C5) = 1, P lA(C6) = 1;

PlB(C1) = 1, P lB(C2) = 1, P lB(C3) = 1,

P lB(C4) = 1, P lB(C5) = 1, P lB(C6) = 1.

Hence, we can see that B is a plausibility consistent set of the tolerance information
system. But it is not a classical consistent set of the tolerance information system,
because RB 6= RA.
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5. Conclusion

On the basis of classical rough set theory which defines the lower and upper
approximations by using an equivalence relation, some researchers proposed its ex-
tended model called tolerance rough set model by using a tolerance relation. We
have discussed in this paper attribute reduction via the Dempster-Shafer theory of
evidence in tolerance information systems. The concepts of belief reduction and
plausibility reduction in tolerance information systems have been introduced and
compared with the concepts of classical reduction and relative one, respectively.
The results will help us to gain much more insights into the meaning of lower and
upper approximations in rough set theory. We can see that the belief and plausibility
functions in the Dempster-Shafer theory of evidence may be used to characterize the
numeric aspects of uncertainty of rough sets and the evidence theory may provide
a useful tool for practical applications of rough set data analysis. In this paper, we
only discussed the issue of attribute reduction by the theory of evidence in toler-
ance information systems without decision. We will investigate their application for
knowledge acquisition in the form of rule induction in our further study.
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